VARIABILITY PATTERN AND ITS DISTRIBUTION AMONG GERMPLASM ACCESSION OF OAT (AVENA SP. L.)

MAYURI SAHU ${ }^{2}$, NEHA BELSARIYA ${ }^{1 *}$, ANJALI KAK ${ }^{\mathbf{3}}$ AND SUJIT ${ }^{4}$
${ }^{1,284}$ Department of Genetics and Plant Breeding, COA, IGKV, Raipur-492 012 (Chhattisgarh), India
${ }^{3}$ Division of Germplasm Conservation, National Bureau of Plant Genetic Resources
*(e-mail: nehabelsariya@gmail.com)

(Received : 21 February 2023; Accepted : 28 June 2023)

Abstract

SUMMARY

The present study on variability and character association in fodder oat was carried out at Research cum Instructional Farm, IGKV, Department of Genetics \& Plant Breeding, Raipur during Rabi, 2019-20. An experiment was conducted with 294 germplasm accession belonging to ten different Avena species with six check varieties of oat (Avena sp. L.) in augmented design. Nineteen quantitative traits were studied for the assessment of genetic variability. Sufficient variation was exhibited by most of the traits studied. The highest values for GCV and PCV was green fodder yield, number of tillers per plant and number of leaves per plant. High heritability and coupled with high genetic advance were found in number of leaves per plant and green fodder yield per plant. Most of the traits studied had skewness value ranged from (-0.5 to 0.5) are normally distributed except for days to 50% flowering, number of tillers per plant, number of leaves of per plant, leaf dry weight per plant, leaf: stem ratio and days to maturity. Negative kurtosis (Platykurtic) viz., leaf length, culm diameter, number of leaves per plant, seed yield per plant, dry matter weight and 1000 seed weight.

Keywords: Oat, genetic variability, correlation coefficients and heritability

Oat (Avena sativa L.) is a multipurpose cereal crop grown in rabi season in many parts of the world. In India, it is used as green fodder, hay and silage for animals. It has excellent growth habit, quick recovery after cutting and provides good quality herbage. Furthermore, the demand for oat for human consumption has increased, particularly because of the demonstrated dietary benefits of oat whole-grain products. Green fodder production for animals to provide balanced nutrition (Phogat et al., 2021). Oat is considered to be a nutritious source of protein, carbohydrate, fibre, vitamins, and minerals as well as of compounds with beneficial effects on health. Assessment of the genetic variability can be achieved using morphological measurements and phenotypic characterization. Very good information on sources of germplasm, various descriptors, data on various morphological traits and characterization of oat germplasm on the basis of morphological traits has been well documented (Choubey et al., 2005). The genotypic correlation between yield and yield attributing characters as well as path coefficient analysis are important in breeding programme. For selection programme, it is essential to have thorough knowledge about the mutual relationship among the yield and its component characters which are positively
correlated. When a greater number of variables is considered, the association becomes more and more complex. Under such situations path coefficients would be more useful for calculating direct and indirect associations with yield. Therefore, the present study was undertaken in fodder oat to gather information on different parameters of genetic variability and association of component traits with fodder yield.

MATERIALS AND METHODS

The present study was carried out during Rabi, 2019 at Research cum instructional farm, Department of Genetics and Plant Breeding, IGKV, Raipur Chhattisgarh. A total of 294 genotypes procured from NBPGR, Delhi is presented in (Table 2) was evaluated under field condition using augmented design. The observations were recorded for 19 oat traits viz., days to 50% flowering, plant height (cm), number of leaves per plant, flag leaf length (cm), flag leaf width (cm), leaf length (cm), leaf width (cm), culm diameter (cm), number of nodes on the main culm, number of tillers per plant, peduncle length (cm), green) fodder yield (g), dry matter yield per plant (g), leaf dry weight per plant (g), stem dry weight per plant (g), leaf: stem ratio, days to maturity, seed yield

TABLE 1
Descriptor of Avena sativa L. (Oat)

S. No.	Characteristic	Class	Score
	Plant Vigour	Poor Good	1
		Very Good	2
			3
	Growth Habit	Erect	1
		Semi-prostate	2
		Prostate	3
		Other (specify)	9
10.	Leaf Colour	Green	1
		Dark Green	2
		Other (specify)	9
	Leaf Sheath pubescence	Absent Present	0
			1
	Flag leaf attitude	Erect	1
		Drooping	2
		Semi-drooping	9
13.	Stem Solidness	Hollow	1
		Semi Solid	2
		Solid	3
	Culm diameter (cm)	Quantitative	
15.	Number of nodes on the main culm	Quantitative	
	Number of tillers per plant	Quantitative	
	Peduncle length (cm)	Quantitative	
	Green fodder yield per plant (kg or g)	Quantitative	
	Dry matter yield per plant (kg or g)	Quantitative	
	Leaf dry weight per plant (g)	Quantitative	
	Stem dry weight per plant (g)	Quantitative	
	Leaf: stem ratio	Quantitative	
	Days to maturity	Quantitative	
25.	Panicle Attitude	Compact	1
		Semi-compact	2
		Lateral	3
		Equilateral	4
		Other (specify)	9
	Awn per spikelet	Absent	0
		One	1
		Two	2
27.	Primary Floret Pubescence	Absent	0
		Present	1
	Spikelet	Shattering	1
	shattering	Non-shattering	2
29.	Hullness	Absent	0
		Present	10
	Seed yield per plant (g)	Quantitative	
	1000 seed weight (g)	Quantitative	
32.	Seed colour	White	1
		Yellow	2
		Grey	3
		Black	4
		Other (specify)	9
	Biotic Stress susceptibility	Very Low	1
		Low	3
		Intermediate	5
		High	7
		Very High	9

per plant (g) and 1000 seed weight (g) were studied which is received from Indian Grassland and Fodder Research Institute, Jhansi are presented in (Table 1). The descriptive statistics were worked out. The estimates of variability parameters were worked out according to the method suggested by Lush (1940). Phenotypic and genotypic coefficients of variation were calculated based on the method advocated by Burton (1952). Heritability in broad sense was estimated (Allard, 1960) and expressed in percentage. Genetic advance as per cent of mean was estimated by the method suggested by Johnson et al. (1955).

Correlation coefficients between green fodder yield and its component traits were used for this analysis. By keeping green fodder yield as a dependent variable and the other traits as independent variables, simultaneous equations, which expressed the basic relationship between path coefficients, were solved to estimate the direct and indirect effects.

RESULTS AND DISCUSSION

Analysis of variance

Analysis of variance was carried out for 19 characters. There is considerable amount of variability present among the genotype studied are presented in the Table Analysis of variance revealed that most of studied were found significant at 1% and 5% level of significance. Trait like plant height, flag leaf length, flag leaf width, leaf length, leaf width, culm diameter, number of nodes per plant, peduncle length, green fodder yield and seed yield per plant were significant at 1% level of significance are observed in (Table-3). The above investigation pressed indicated better opportunity for a breeder to select a genotype for these traits.

MEAN, RANGE AND CV

Descriptive statistical analysis of the recorded characters like mean, minimum, maximum, standard deviation and coefficient of variation (CV) for green fodder yield and different quantitative traits are shown in the (Table 4). Days to 50% flowering showed a range of 66 to 103 with a mean of 81.29 . The accession EC0130646 was found to be very early. all quantitative characters exhibited variability evident by high CV observed in most of the traits studied. The high CV observed among morphological characters which include leaf dry weight per plant (gm) (44.58\%) followed by L:S ratio (41.83%), green fodder yield (gm) (34.57\%), seed yield per plant (gm) (24.11\%), number of tillers per plant (23.55%), dry matter yield per plant (gm) (23.14%), stem dry weight per plant (gm) (22.8%), number of leaves per plant (21.5%) is a clear indication of a high level of variability.

Phenotypic coefficient of variation (PCV) and genotypic coefficient of variation

The estimates of phenotypic coefficient of variation (PCV), genotypic coefficient of variation (GCV), heritability in broad sense ($\mathrm{h}^{2}, \mathrm{BS}$) and genetic
TABLE 2
List of genotypes of oat used in the study

S. Botanical name No.	Accession	Country Name	$\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$	Botanical name	Accession	Country Name	$\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$	Botanical name	Accession	Country Name
1. Avena sativa	EC0108120	ARGENTINA	43.	Avena sativa	EC0841794	SWEDEN	85.	Avena sativa	EC0108648	AUSTRALIA
2. Avena sativa	EC0108122	ARGENTINA	44.	Avena sativa	EC0841793	SWEDEN	86.	Avena sterilis	EC0130450	CANADA
3. Avena sativa	EC0108124	ARGENTINA	45.	Avena sativa	EC0841791	SWEDEN	87.	Avena sativa	EC0178760	CANADA
4. Avena sativa	EC0108125	ARGENTINA	46.	Avena sativa	EC0841790	SWEDEN	88.	Avena sativa	EC0176071	CANADA
5. Avena sativa	EC0108126	ARGENTINA	47.	Avena sativa	EC0841789	SWEDEN	89.	Avena sativa	EC0109263	CANADA
6. Avena sativa	EC0246122	BRAZIL	48.	Avena sativa	EC0841788	SWEDEN	90.	Avena sativa	EC0109243	CANADA
7. Avena sativa	EC0246131	BRAZIL	49.	Avena sativa	EC0841787	SWEDEN	91.	Avena sativa	EC0109104	CANADA
8. Avena sativa	EC0246132	BRAZIL	50.	Avena sativa	EC0841785	SWEDEN	92.	Avena sativa	EC0092887	CANADA
9. Avena sativa	EC0246134	BRAZIL	51.	Avena sativa	EC0006715	SWEDEN	93.	Avena sativa	EC0043840	CANADA
10. Avena sativa	EC0246144	BRAZIL	52.	Avena sativa	EC0013354	SWEDEN	94.	Avena sativa	EC0112034	CANADA
11. Avena sativa	EC0246145	BRAZIL	53.	Avena sativa	EC0013351	SWEDEN	95.	Avena sativa	EC0109262	CANADA
12. Avena sterilis	EC0062320	NORWAY	54.	Avena sativa	EC0004721	FRANCE	96.	Avena sativa	EC0178759	CANADA
13. Avena sativa	EC0057332	FINLAND	55.	Avena sativa	EC0003230	CYPRUS	97	Avena sativa	EC0178761	CANADA
14. Avena sativa	EC0057333	FINLAND	56.	Avena sativa	EC0007815	YUGOSLAVIA	98.	Avena sativa	EC0140899	CANADA
15. Avena sativa	EC0099174	PORTUGAL	57.	Avena byzantina	IC0282934	UTTARAKHAND	99.	Avena sativa	EC0117407	AUSTRALIA
16. Avena byzantina	EC0099164	PORTUGAL	58.	Avena sativa	EC0246149	BRAZIL	100.	Avena sativa	EC0117404	AUSTRALIA
17 Avena byzantina	EC0099163	PORTUGAL	59.	Avena sativa	EC0246148	BRAZIL	101.	Avena sativa	EC0114246	AUSTRALIA
18. Avena sativa	EC0099178	PORTUGAL	60.	Avena sativa	EC0246150	BRAZIL	102.	Avena sativa	EC0108657	AUSTRALIA
19. Avena sativa	EC0099175	PORTUGAL	61.	Avena sterilis	EC0013183	CANADA	103.	Avena sativa	EC0055192	AUSTRALIA
20. Avena sativa	EC0099170	PORTUGAL	62.	Avena sativa	EC0109261	CANADA	104.	Avena sativa	EC0004453	AUSTRALIA
21. Avena byzantina	EC0099161	PORTUGAL	63.	Avena sativa	EC0113921	AUSTRALIA	105.	Avena sativa	EC0004456	AUSTRALIA
22. Avena sativa	EC0007814	YUGOSLAVIA	64.	Avena byzantina	EC0015550	GERMANY	106.	Avena sativa	EC0007662	AUSTRALIA
23. Avena sativa	EC0054834	ISRAEL	65.	Avena byzantina	EC0108724	ISRAEL	107.	Avena sativa	EC0008370	AUSTRALIA
24. Avena sativa	EC0095143	CHILE	66.	Avena byzantina	EC0099165	PORTUGAL	108.	Avena sativa	EC0061704	UK
25. Avena sativa	EC0096459	NEW ZEALAND	67.	Avena sativa	EC0054937	NEW ZEALAND	109.	Avena sativa	EC0108588	UK
26. Avena sativa	EC0112078	ECUADOR	68.	Avena sterilis	EC0013594	AUSTRALIA	110.	Avena sativa	EC0108601	UK
27. Avena sativa	EC0112079	ECUADOR	69.	Avena sativa	EC0004438	AUSTRALIA	111.	Avena sativa	EC0108604	UK
28. Avena sativa	EC0157669	JAPAN	70.	Avena sativa	EC0008367	AUSTRALIA	112.	Avena sativa	EC0108602	UK
29. Avena sativa	EC0030247	RUSSIA	71.	Avena sativa	EC0008369	AUSTRALIA	113.	Avena sativa	EC0107538	AUSTRALIA
30. Avena sativa	EC0030244	RUSSIA	72.	Avena sativa	EC0086444	AUSTRALIA	114.	Avena sativa	EC0107536	AUSTRALIA
31. Avena sativa	EC0159072	FINLAND	73.	Avena sativa	EC0056175	AUSTRALIA	115.	Avena sativa	EC0107534	AUSTRALIA
32. Avena sativa	EC0159073	FINLAND	74.	Avena sativa	EC0057341	AUSTRALIA	116.	Avena sativa	EC0160165	AUSTRALIA
33. Avena sativa	EC0159069	FINLAND	75.	Avena sativa	EC0055197	AUSTRALIA	117.	Avena sativa	EC0029050	AUSTRALIA
34. Avena sativa	EC0067153	SWEDEN	76.	Avena sativa	EC0107533	AUSTRALIA	118.	Avena sativa	EC0102653	AUSTRALIA
35. Avena sativa	EC0028808	SWEDEN	77.	Avena sativa	EC0103929	AUSTRALIA	119.	Avena sativa	EC0102652	AUSTRALIA
36. Avena sativa	EC0028814	SWEDEN	78.	Avena sativa	EC0102649	AUSTRALIA	120.	Avena sativa	EC0019711	AUSTRALIA

AUSTRALIA
《
AUSTRALIA
 EC0108654 o EC0004451 EC0030248 EC0029049 n n
0
0
0
0
0
0
0

0 8 | t |
| :--- |
| in |
| o |
| 0 |
| 8 |
| 0 | or EC0099353 EC0022034 EC0022031寺 or ∞

n
n
0
0
0 N on

 \begin{tabular}{l}
m

\multirow{2}{*}{}

0

8

\hline

 상

o

0

\vdots

8

8

\hline
\end{tabular}

 EC0104483 EC0103202㓱 N EC0102333

 | ∞ |
| :---: | :---: |
| ∞ |
| ∞ |
| 0 |
| 0 | to

0
0
0
\tilde{N}_{3}
0
0 च

EC0114385 AUSTRALIA 4
4
2
2
2
0
0
0
0
0
0
0
花 4
4
4
4
4
4

等觡施 웅 | 8 |
| :--- |
| $\stackrel{0}{m}$ |
| $\stackrel{3}{8}$ |

象号 n
∞
n
0
0 ∞
$\underset{1}{i}$
$\boldsymbol{1}^{2}$ o会
这言 N
N
İ
or
0

0 त \begin{tabular}{l}
O

त्रे

O

\hline

0

0

0

\hline

 EC010448 $\begin{array}{r}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline\end{array}$

0

\hline

\hline

8

\hline

 EC0104004 EC0104003 N

∞

d

\hline 0

\hline

\hline
\end{tabular}岁

242. Avena strigosa \quad EC0108485
243. Avena magna \quad EC0108466
USA
244. Avena byzantina EC0108451
USA
245. Avena abyssinicaEC0108436
USA
246. Avena byzantina EC0108448
 EC0102331
EC0310508
EC0310510
EC0310507
EC0310506
EC0096586
EC0108435
EC0108434
EC0005677
EC0005680
EC0005854
EC0005906
EC0008287
EC0057661
EC0093065
EC0209260
EC0043665
EC0043586
EC0039915
EC0209213
EC0131305
EC0093068
EC0209198
RO-19
JHO-822
OS-405
J0-1
JHO-851
UPO-12-1

Source: Procured from NBPGR (National Bureau of Plant Genetic Resources).
advance as per cent of mean (GA) are presented in (Table 5). Highest estimated GCV and PCV was observed for number of leaves per plant, number of tillers per plant and green fodder yield per plant. Number of leaves per plant showed range of 9.80 to 78.17 with mean 38.63 . The accession EC0095144 was found to be more no. of leaves. Number of tillers per plant showed range of 2.60 to 16 with mean 7.7. The accession EC0099165 was found to be more tillers. Green fodder yield per plant showed range of 32.20 to 229 with mean 92.79. The accession EC0004721 was found to be more green fodder. So, by selecting these traits would provide a good scope for crop improvement, Chakraborty et al. 2014 and Chouhan and Singh, 2019 also found high GCV and PCV for seed yield per plant.

Heritability and genetic advance

The success in any breeding programme depends on the spectrum of genetic variability present in the germplasm. A survey of genetic variability is essentially the first step in crop improvement and plant breeding is an exercise in the management of variability
(Hutchinson, 1958). Heritability indicates the accuracy with which a genotype can be identified by its phenotypic performance. High heritability combined with high genetic advance in the indication of additive gene action and selection based on this would be more effective. High heritability and high genetic advance were found in number of leaves per plant and green fodder yield per plant. Sangwan et. al. (2012) observed high heritability with high genetic advance for tillers per plant and green fodder yield.

SKEWNESS AND KURTOSIS

The magnitude and frequency of such variants might be more in one or the other direction or be equal in both directions. A comparison of the distribution parameters like skewness and kurtosis would give a clearer picture of the extent of variability induced in the traits. Skewness and kurtosis indicate relative mean performance and nature of distribution of traits. If value ranges from -0.5 to 0.5 then the data is normally distributed i.e., symmetrical. Kurtosis indicates the peak ness or flatness of a tail of a curve. If the value is near $(?=3)$ then the data is normally distributed

TABLE 3
Analysis of variance for green fodder yield and its attributing traits in oat (Avena sativa sp.)

Source of variation	Degree of freedom	Days to\% 50 flowering	Plant height	Flag leaf length	Flag leaf width	Leaf length	Leaf width	Culm diameter	No. of nodes/ plant	No. of tillers/ plant	No. of leaves/ plant
Block (ignoring treatments	5	400 **	230.95** 1	123.577**	0.31**	160.98**	0.16**	* 0.155**	0.653*	104.58**	7,550.64**
Treatments (eliminating blocks)	293	62.04 *	111.24**	23.4*	0.06**	38.1**	0.03	0.007	0.364	4.575	107.444
Blocks (eliminating treatments)	5	7.985	16.78	20.67 0.0.0	0.053**	13.95	0.07*	0.023**	0.053	3.695	49.273
Treatment (ignoring blocks)	293	68.73**	114.89**	25.15* 0	0.064**	40.61**	0.04	0.009	0.374	6.29*	235.45**
Checks	5	34.911	927.92**	82.62** 0	0.392**	71.73**	0.27**	* 0.03**	1.116**	1.972	35.54
Varieties	287	69.55**	88.62**	24.237*	0.06**	39.01**	0.03	0.009	0.314	6.19*	232.22**
C vs V	1	1.784	3,590.72**	0.654	0.075	344.84**	0.032	- 0.011	13.869**	57.32**	2,162.11**
Varieties+Checks vs Varieties	288	62.511*	97.06**	22.37*	0.054**	37.52**	0.029	0.006	0.351	4.62	108.693
Error323	30.136	30.285	12.233	0.024	16.846	0.022	0.006	- 0.217	3.186	66.332	
Source of variation	Degree of freedom	Peduncle length	Green fodder yield/plant	Leafdry weight/ plant	Stem dry weig plant			eaf: stem ratio	Days to maturity	Seed yield/ plant	$\begin{aligned} & 1000 \text {-seed } \\ & \text { weight } \end{aligned}$
Block (ignoring treatments	5	97.49**	7,503.87**	203.14**	* 22.666	6347.27	27** 0	0.489**	160.77**	274.45**	384.01**
Treatments (eliminating blocks)	293	15.62*	676.905	2.164	14.084	417.3		0.013	3.748	29.051	74.796
Blocks (eliminating treatments)	5	12.15	2,193.20	15.049	25.084	464.8		0.016	12.72**	25.553	121.25*
Treatment (ignoring blocks)	293	17.08*	767.531	5.374	14.043	322.1	142	0.021	6.27*	33.298	79.28*
Checks	5	95.3**	7,413.06**	- 6.06	23.029	927.9	956	0.016	1.783	208.87**	51.983
Varieties	287	15.36*	645.209	5.38	13.93	22.11	114	0.021	6.37*	30.176	79.94*
C vs V	1	119.62**	2,646.38	0.348	1.352		18	0.001	0.395	51.611	25.88
Varieties+Checks vs Varieties	288	14.24*	559.958	2.097	13.929	917.1	. 138	0.013	3.782	25.929	75.192
Error	25	7.798	1,047.20	6.162	17.756	630.9	918	0.02	2.89	19.524	44.903

[^0]TABLE 4
Genetic variability parameters for forage yield and its contributing traits in oat (Avena sativa Sp .)

S. No.	Character	Maximum	Minimum	Grand mean	S.D.	S.E.	CV (\%)
1.	DF50\%T	103.00	66.00	81.29	8.06	0.47	10.16
2.	PH	147.03	86.74	115.34	9.72	0.57	4.73
3.	FLL	43.48	13.64	27.06	4.85	0.28	12.93
4.	FLW	2.52	0.74	1.70	0.24	0.01	9.09
5.	LL	59.32	26.48	43.93	6.3	0.37	9.28
6.	LW	2.98	1.34	1.97	0.18	0.01	7.52
7.	CD	0.81	0.33	0.58	0.08	0.01	13.05
8.	NN/P	6.60	3.20	4.77	0.58	0.03	9.66
9.	NT/P	16.00	2.60	7.70	2.23	0.13	23.55
10.	NL	78.17	9.80	38.63	15.97	0.93	21.5
11.	PL	46.94	22.48	30.76	3.88	0.23	9.03
12.	GFY	229.00	32.20	92.79	24.8	1.45	34.57
13.	LDW	16.00	2.00	5.56	1.62	0.09	44.58
14.	SDW	30.40	7.60	18.47	3.96	0.23	22.8
15.	DMY	41.60	10.40	24.01	4.21	0.25	23.14
16.	L:S	1.03	0.07	0.33	0.13	0.01	41.83
17.	DTM	102.00	87.00	92.19	2.1	0.12	1.84
18.	SY	32.00	2.4	18.21	5.12	0.3	24.11
19.	1000 SW	70.00	11	37.80	9.14	0.53	17.77
$\begin{aligned} & \text { DT } 50 \% \text { F = Days to } 50 \% \text { flowering } \\ & \text { PH }(\mathrm{cm})=\text { Plant height } \\ & \text { FL }(\mathrm{cm})=\text { Flag leaf length } \\ & \text { FW }(\mathrm{cm})=\text { Flag leaf width } \end{aligned}$		LL (cm) = Leaf length		NT/P = No. of tillers per plant		DMY (g) = Dry	ld per plant
		LW (cm) = Leaf width		NL/P = No. of leaves per plant		LDW (g) = Leaf	t per plant
		$\mathrm{CD}(\mathrm{~cm})=\text { Culm diameter }$		PL (cm) = Peduncle length		$\text { SDW }(\mathrm{g})=\text { Stem }$	ht per plant
		$\mathrm{NN} / \mathrm{P}=\mathrm{No}$. of nodes on the main culm		GFY (g) = Green fodder yield		L:S = leaf: stem	

DTM = Days to maturity
SY $(\mathrm{g})=$ Seed yield per plant
1000 SW $(\mathrm{g})=1000$ seed weight
TABLE 5
Genetic variability parameters for forage yield and its contributing traits in oat (Avena sativa Sp.)

S.	Character	GCV (\%)	PCV (\%)	H2 (bs) \%	G A	GA (as \% of mean)	Skewness	Kurtosis
1	DF50\%F	7.72	10.26	56.67	9.75	11.99	1.22 **	4.0 **
2	PH	6.62	8.16	65.82	12.78	11.08	0.1	3.7 *
3	FLL	12.8	18.19	49.53	5.03	18.59	0.08	3.6*
4	FLW	10.9	14.21	58.87	0.29	17.25	0.17	4.1 **
5	LL	10.72	14.22	56.81	7.32	16.66	-0.09	2.8
6	LW	4.88	8.96	29.68	0.11	5.48	0.28	5.5 **
7	CD	9.62	16.24	35.06	0.07	11.75	0.06	2.8
8	NN/P	6.53	11.76	30.84	0.36	7.48	0.41 **	3.6
9	NT/P	22.52	32.32	48.56	2.49	32.38	0.74 **	3.6
10	NL	33.34	39.44	71.43	22.46	58.13	0.8 **	2.6
11	PL	8.94	12.74	49.21	3.98	12.93	0.53 **	3.9*
12	GFY	21.60	27.38	62.30	32.44	34.96	0.33 *	3.8 *
13	LDW	15.88	41.72	14.50	69.28	12.46	1.62 **	9.7 **
14	SDW	10.6	20.21	27.49	2.11	11.42	-0.14	2.6
15	DMY	12.36	19.58	39.85	3.86	16.08	-0.04	3.3
16	L:S	11.42	43.42	6.92	0.02	6.2	1.08 **	4.9 **
17	DTM	2.02	2.74	54.65	2.85	3.09	1.38 **	7.2 **
18	SY	17.92	30.16	35.3	4	21.97	-0.21	3.6
19	1000 SW	15.66	23.65	43.83	8.08	21.39	0.35 *	3.2

DT 50% F = Days to 50% floweri
PH $(\mathrm{cm})=$ Plant height
FL $(\mathrm{cm})=$ Flag leaf length
FW $(\mathrm{cm})=$ Flag leaf width
DTM = Days to maturity
SY $(\mathrm{g})=$ Seed yield per plant
1000 SW $(\mathrm{g})=1000$ seed weight

TABLE 6
Correlation analysis for green forage yield and its contributing traits in oat (Avena sativa Sp.)

	PH	FL	FW	LL	LW	CD	NN	NT	NL	PL	LDW	SDW	DMW	L:S	DTM	SY	1000SW	GFY
DT50\%	-0.02	0.08	0.06	0.01	0.05	0.15	0.12	0.02	-0.13	-0.16	0.08	0.033	0.066	0.029	0.192	-0.093	0.17	0.06
F																		
PH		0.24	0.11	0.40	0.01	0.04	0.28	-0.09	-0.12	0.37	-0.05	0.024	-0.004	-0.009	-0.130	0.100	-0.04	0.27
FL			0.24	0.54	0.10	0.20	-0.11	-0.03	-0.20	0.17	0.01	0.006	0.012	0.016	-0.002	0.152	0.28	0.23
FW				0.20	0.49	0.20	0.16	0.06	-0.04	0.16	0.04	0.044	0.053	0.025	0.117	0.034	0.04	0.24
LL					0.13	0.22	0.04	-0.16	-0.20	0.31	0.08	0.027	0.063	0.075	-0.026	0.035	0.12	0.18
LW						0.31	-0.06	0.04	0.15	0.22	0.01	0.032	0.03	0.019	0.101	-0.09	0.08	0.004
CD							0.05	-0.01	-0.18	0.17	0.12	-0.002	0.058	0.126	0.242	-0.04	0.09	0.01
NN/P								-0.12	-0.10	0.03	0.09	-0.042	0.014	0.108	0.051	-0.11	-0.19	0.07
NT/P									0.29	-0.03	-0.24	0.004	-0.114	-0.223	0.258	0.151	0.10	0.04
NL										0.137	-0.28	-0.103	-0.223	-0.166	-0.090	0.029	-0.17	-0.107
PL											-0.21	-0.131	-0.206	-0.076	-0.189	0.113	-0.10	0.085
LDW												0.162	0.622	0.757	0.311	-0.349	0.022	0.24
SDW													0.873	-0.403	0.004	-0.009	0.135	0.072
DMY														0.054	0.156	-0.178	0.119	0.177
L:S															0.276	-0.279	-0.06	0.083
DTM																-0.094	0.066	0.097
SY																	0.210	0.027
1000 SW																		0.08
DT $50 \% \mathrm{~F}=$ Days to 50% flow PH (cm) = Plant height FL $(\mathrm{cm})=$ Flag leaf length FW (cm) = Flag leaf width				ring	LL (cm) = Leaf length						NT/P = No. of tillers per plant				DMY (g) = Dry matter yield per plant			
					LW (cm) = Leaf width N						NL/P $=$ No. of leaves per plant				LDW (g) = Leaf dry weight per plant			
					$\mathrm{CD}(\mathrm{cm})=$ Culm diameter $\quad \mathrm{P}$						PL (cm) $=$ Peduncle length \quad S				SDW (g)= Stem dry weight per plant			
					$\mathrm{NN} / \mathrm{P}=$ No. of nodes on the main culm						GFY (g) = Green fodder yield L				L:S = leaf: stem ratio			

DTM = Days to maturity
SY $(\mathrm{g})=$ Seed yield per plant
1000 SW $(\mathrm{g})=1000$ seed weight
(mesokurtic). Kurtosis $(?<3)$ indicates the flatness of the curve i.e., platykurtic and if it is $(?>3)$ then it indicates the peak ness of a curve i.e., leptokurtic (Misra et al. 2008). Positive skewness i.e., longer tailed to the right shows dominant and complementary gene action where negative skewness i.e., longer tailed to the left is associated with dominant and duplicate gene action (Pooni et al. 1977). Leptokurtic (positive kurtosis) indicates that traits are governed by fever number of genes and platykurtic (negative kurtosis) shows that traits are governed by large number of genes (Kapur et al. 1981).

In the present study most of the trait showed almost normal distribution (i.e., skewness estimated not significantly different from -0.5 to 0.5 and kurtosis is 3 respectively) (Table-5). On the other hand, most of the traits had distribution pattern showing deviation from normality i.e., showed significant skewness trait like days to 50% flowering, number of tillers per plant, number of leaves of per plant, leaf dry weight per plant, leaf: stem ratio and days to maturity.

Similarly, most of the trait showed leptokurtic distribution pattern (i.e., Kurtosis estimates significantly more than 3.0) and Leaf length, culm diameter, number of leaves per plant, stem dry weight per plant, dry matter weight and 1000 seed weight exhibited negative kurtosis (platykurtic). Kar et al.
(2019) observed leptokurtic for seed yield per plant in sesame.

CORRELATION AND PATH ANALYSIS

Relationship between various morphological traits and green fodder yield was also worked out and presented in (Table 6). It is clear from the table that high positive correlation for green fodder yield was shown by leaf dry weight per plant, dry matter yield per plant, stem dry weight per plant and leaf width.

Correlation coefficients were not enough to determine traits as selection criteria in our study. In agriculture, path analyses have been used by plant breeders to assist in identifying traits that are useful as selection criteria to improve crop yield (Dewey \& Lu, 1959; Milligan et al. 1990). Path analysis was conducted to determine direct and indirect effect of traits on oat yield, and the results from path analysis are given in (Table 7). dry matter weight was followed by plant height, flag leaf width, flag leaf length, number of tillers per plant, peduncle length, days to maturity, seed yield per plant, number of leaves per plant, 1000 seed weight and days to 50% flowering showed significant positive correlation as well as positive direct effect on dependent character green fodder yield.
TABLE 7
Path matrix for green forage yield in oats (Avena sativa L.)

	$\begin{gathered} \text { D T } \\ 50 \% \text { F } \end{gathered}$	P H	FL	FW	LL	LW	CD	NN	N T	NL	PL	LDW	SDW	DMW	L:S	DTM	SY	1000	r^{2} with SW
DT 50\% F	0.025	-0.004	0.010	0.013	0.000	-0.005	-0.010	-0.005	0.001	-0.005	-0.010	-0.032	-0.080	0.169	-0.019	0.009	-0.004	0.005	0.06
PH	0.000	0.271	0.030	0.026	-0.012	-0.002	-0.003	-0.012	-0.006	-0.005	0.023	0.020	-0.057	-0.011	0.006	-0.006	0.004	-0.001	0.27
FL	0.002	0.065	0.125	0.057	-0.016	-0.011	-0.013	0.005	-0.002	-0.008	0.011	-0.005	-0.014	0.031	-0.011	0.000	0.007	0.008	0.23
FW	0.001	0.029	0.030	0.240	-0.006	-0.057	-0.014	-0.007	0.004	-0.002	0.010	-0.014	-0.105	0.135	-0.017	0.006	0.002	0.001	0.24
LL	0.000	0.108	0.067	0.048	-0.030	-0.015	-0.015	-0.002	-0.011	-0.008	0.019	-0.034	-0.064	0.162	-0.050	-0.001	0.002	0.003	0.18
LW	0.001	0.004	0.012	0.118	-0.004	-0.117	-0.022	0.003	0.002	0.006	0.014	-0.003	-0.076	0.076	-0.013	0.005	-0.004	0.002	0.004
CD	0.004	0.011	0.024	0.048	-0.007	-0.037	-0.069	-0.002	-0.001	-0.007	0.010	-0.048	0.004	0.150	-0.085	0.012	-0.002	0.003	0.01
NN/P	0.003	0.075	-0.013	0.039	-0.001	0.007	-0.004	-0.044	-0.008	-0.004	0.002	-0.037	0.099	0.035	-0.073	0.002	-0.005	-0.005	0.07
NT/P	0.001	-0.024	-0.003	0.015	0.005	-0.004	0.001	0.005	0.068	0.012	-0.002	0.097	-0.009	-0.292	0.150	0.012	0.007	0.003	0.04
NL	-0.003	-0.032	-0.025	-0.009	0.006	-0.018	0.013	0.004	0.020	0.040	0.009	0.114	0.244	-0.571	0.112	-0.004	0.001	-0.005	-0.107
PL	-0.004	0.100	0.021	0.039	-0.009	-0.026	-0.011	-0.001	-0.002	0.005	0.062	0.083	0.312	-0.528	0.051	-0.009	0.005	-0.003	0.085
LDW	0.002	-0.014	0.002	0.008	-0.003	-0.001	-0.008	-0.004	-0.016	-0.011	-0.013	-0.400	-0.385	1.592	-0.509	0.015	-0.016	0.001	0.24
SDW	0.001	0.006	0.001	0.011	-0.001	-0.004	0.000	0.002	0.000	-0.004	-0.008	-0.065	-2.378	2.236	0.271	0.000	0.000	0.004	0.072
DMW	0.002	-0.001	0.001	0.013	-0.002	-0.003	-0.004	-0.001	-0.008	-0.009	-0.013	-0.249	-2.076	2.560	-0.036	0.007	-0.008	0.003	0.177
L:S	0.001	-0.002	0.002	0.006	-0.002	-0.002	-0.009	-0.005	-0.015	-0.007	-0.005	-0.303	0.959	0.138	-0.672	0.013	-0.013	-0.002	0.083
DTM	0.005	-0.035	0.000	0.028	0.001	-0.012	-0.017	-0.002	0.017	-0.004	-0.012	-0.124	-0.009	0.401	-0.186	0.047	-0.004	0.002	0.097
SY	-0.002	0.027	0.019	0.008	-0.001	0.010	0.003	0.005	0.010	0.001	0.007	0.140	0.022	-0.456	0.187	-0.004	0.045	0.006	0.027
1000 SW	0.004	-0.011	0.035	0.009	-0.004	-0.009	-0.006	0.008	0.007	-0.007	-0.006	-0.009	-0.321	0.306	0.043	0.003	0.009	0.029	0.08

$\begin{array}{lll}\mathrm{NT} / \mathrm{P}=\text { No. of tillers per plant } & \text { DMY }(\mathrm{g})=\text { Dry matter yield per plant } & \text { DTM }=\text { Days to maturity } \\ \text { NL/P }=\text { No. of leaves per plant } & \text { LDW }(\mathrm{g})=\text { Leaf dry weight per plant } & \text { SY }(\mathrm{g})=\text { Seed yield per pla }\end{array}$
SDW $(\mathrm{g})=$ Stem dry weight per plant 1000 SW $(\mathrm{g})=1000$ seed weight L:S = leaf: stem ratio

REFERENCES

Allard, R.W., 1960 : Principles of plant breeding. John Wiley and Sons Inc., U.S.A.
Anonymous. 2002 : Handbook of Animal Husbandry. Indian Council of Agricultural Research, New Delhi.
Burton, G.W. 1952 : Quantitative inheritance in grasses. In: Proc. of the 6th International Grassland Congress, pp 277-283.
Chakraborty, J., R.N. Arora, U.N. Joshi and A.K. Chhabra, 2014: Evaluation of Avena species for yield, quality attributes and disease reaction. Forage Re., 39(4): 179-181.
Choubey, R. N., A. K. Roy, S. V. S. Prasad, S. N. Zadoo, and R. B. Bhaskar, 2005: IGFRI Oat Germplasm Catalogue, Indian Grassland and Fodder Research Institute, Jhansi.
Chauhan, Charupriya and SK Singh, S.K. 2019. Genetic variability, heritability and genetic advance studies in oat (Avena sativa L.). IJCS, 7(1): 992994.

Dewey, D. R., and K. H. Lu, 1959: Agron. J., 15: 515-518. Hutchinson, J.B., 1958 : Genetics and the improvement of tropical crops. Cambridge University Press.
Johnson, H.W., H.F. Robinson and R.E. Comstock, 1955 : Estimates of genetic and environmental variability in soybean. Agron. J., 47: 314-318.

Kapur, S.K., 1981 : Elements of practical statistics. Oxford and IBH Publishing Co., New Delhi. Pp 148-154.
Kar, Rakesh., Mishra, Tapas., and Pradhan, Banshidhar. 2019 : Studies on Frequency Distribution, Skewness and Kurtosis in F1m1 Mutant Populations of Sesame. Int. J. Curr. Microbiol. App. Sci., 8(4): 1755-1760.
Lush, J.L. 1940. Intra - sire correlation and regression of offspring on dams as a method of estimating heritability of characters. In: Proc. of "American Society of Animal Production". 33: 293-301.
Misra, R.C., P.K. Sahu, C.R. Jali, H.P. Mishra, and L.D. Misra, 2008 : STUDIES ON skewness, kurtosis and transgressive variation in M_{2} population of rice bean (Vigna umbelata) varieties. Legume Res., 31(2): 94-99.
Phogat, D. S., Y. Jindal, M. Jattan, N. Kumar, D. P. Singh and N. Kharor, 2021: HFO 529: A new single-cut oat vatiety for hill zone of India. Forage Res., 47(3): 379-382.
Pooni. H.S., J.L. Jinks and M.A. Cornish, 1977 : The causes and consequences of non-Normality in predicting the properties of recombinant inbred lines. Hered. 38(3): 329-338.
Sangwan, O., R. Avtar, R.N. Arora and A. Singh, 2012 : Variability and character association studies in fodder oat (Avena sativa L.). Forage Res., 38(1): 56-58.

[^0]:

