GFS 8 (BANAS CHARI) – A NEW SINGLE CUT FORAGE SORGHUM VARIETY FOR SEMI-ARID REGION OF GUJARAT

R. A. GAMI¹*, K. G. KUGASHIYA¹, B. K. DAVDA², R. N. PATEL¹, S. K. JAIN¹, P. R. PATEL¹ AND S. J. VAGHELA¹

¹Centre for Millets Research, S. D. Agricultural University, Deesa-385 535 (Gujarat), India ²Main Sorghum Research Station, NAU, Surat (Gujarat), India *(e-mail: ramangami@gmail.com) (Received : 8 May 2024; Accepted : 20 June 2024)

SUMMARY

The new fodder sorghum variety GFS 8 (Banas chari) breed through pedigree selection method from the cross between NR 184 × UPMC 512 at Centre for Millets Research, Sardarkrushinagar Dantiwada Agricultural University, Deesa, Gujarat. The fodder sorghum variety GFS 8 (Banas chari) (DSF 168) was tested in a preliminary evaluation trial (PET) in kharif 2017. It was also tested in AICRP - Sorghum in IVHT-SC trials as a SPV 2879 in kharif 2021 in fourteen locations (Zone I and Zone II) nationwide. The fodder sorghum variety GFS 8 (Banas chari) was tested under 31 state trials against various check varieties viz., GFS 5, GAFS 12, CSV 21 F, GFS 6 and CSV 46 F. The mean performance of GFS 8 (Banas chari) for green fodder yield over 31 locations, including the preliminary trial was 433.6 g/ha. In the case of dry fodder yield, the mean performance over 30 locations, including the preliminary trial was 139.7 q/ha. In Gujarat, based on 31 testing trials GFS 8 (Banas chari) exhibited high green fodder yield (433.6 q/ha) with an increment of 28.1, 24.2, 6.4 and 8.2 per cent, respectively and based on 30 location dry fodder (139.7 q/ha) with an increment of 26.6, 18.0, 6.8 and 1.8 per cent over the years and locations against checks GFS 5, GAFS 12, CSV 21 F and GFS 6 respectively. It medium may be flowers within 65-75 days, tall in nature, long & broad leaves and a thin stem diameter. It is moderately resistant to leaf blight and anthracnose diseases and exhibited lower infestation of shoot fly and stem borer. Besides the yield advantage, the variety has also recorded higher TSS (11.1% Brix) and crude protein (6.1%) as well as low HCN content (48.1 ppm).

Key words: Fodder Sorghum, green fodder, dry fodder and morphological attributes

Sorghum or Great millet [Sorghum bicolor (L.) Moench] is the most important grain and fodder crop of the semi-arid tropics. Sorghum grains are essential as food for human beings and livestock feed. The stem and foliage are used as green forage, hay, silage and pasture. The stems are also used as fuel. Though sorghum is known for its versatile use, hardiness, dependability, yield stability, and adaptability over a wide range of climates, the edapho-climatic conditions in the sorghum growing areas of the world limit crop production. For any dairy industry, a supply of nutritious fodder is a prerequisite for its success. Forage sorghum is nutritive forage, more palatable and has good regeneration capability with high dry fodder production and high dry matter digestibility compared to other kharif and summer season fodder crops (Ghosh et al., 2016). In Gujarat, the dairy industry is developing very fast, and hence the demand for forage increasing day by day. Among the forage crops, quality fodder is available from sorghum

[Sorghum bicolor (L.) Moench] both green and dry fodder.

Sorghum is grown in almost all the districts of Gujarat to meet the fodder requirement for maintaining the milch animals. Due to the cultivation of cash crops in the Kharif season and the fast development of dairy industries, there is a forage shortage. The sorghum has potential for cultivation after cash crop because of the high value of fodder; the fodder sorghum cultivars can catch the demand of green forage and dry fodder. Farmers are growing improved varieties and local fodder cultivars to meet the requirements. However, the local cultivars have poor quality, late maturity and low green and dry fodder yields. Absence of improved genotype, weed control, plant protection, fertilizer and irrigation resulted in 39, 33, 31, 30 and 22 per cent losses in the productivity of fodder sorghum as compared to full package of practices (Satpal et al., 2021). Therefore, developing a variety with early maturity, high green and dry fodder yield potential with suitable quality parameters is necessary along with the crop management practices. Cultivars viz., GFS 5, GAFS 12, CSV 21 F, GFS 6 and CSV 46F for fodder sorghum purpose are cultivating in Gujarat. The local varieties like malwan have demerits like a high infestation of pest, late maturity and poor yields both for grain and fodder. Therefore, it is a need to develop a variety that has high green and dry fodder yield potential with early to medium flowering. The released variety GFS 8 [*Banas chari*] was developed from cross NR 184 × UPMC 512 followed by continuous evaluation and selection.

MATERIALS AND METHODS

The new fodder sorghum variety GFS 8 [Banas chari] breed through pedigree selection method from cross NR 184 × UPMC 512 at Centre for Millets Research, Sardarkrushinagar Dantiwada Agricultural University, Deesa, Gujarat with the name of DSF 168. The cross was made in 2009-10 followed by pedigree selection was done from *kharif*, 2010 to 2016. This variety was advanced with main objectives of high green and dry fodder yield. The variety GFS 8 [Banas chari] was tested in a preliminary evaluation trial (PET) in kharif, 2017. It was found promising and further, it was tested in state multilocation trial from kharif 2018 to 2021. It was also tested under the AICRP sorghum- IVHT trial in kharif 2021 as SPV 2879 at fourteen locations (Zone-I and II) nationwide. The variety was also screened for disease and pest under field conditions in state and AICRP trials (Anonymous 2021-22). The DNA fingerprinting of GFS 8 (Banas chari) (DSF-168) along with four check varieties GAFS 12, GFS 6, CSV 21F and CSV 46F was performed using 11 SSR Markers (Table 1).

RESULTS AND DISCUSSION

The forage sorghum variety GFS 8 [Banas chari] was evaluated in PET during kharif 2017 against various check varieties viz., GFS 5 and CSV 21 F. The tested entry exhibits a significantly high green forage yield (411.1 q/ha) with 17.5 and 2.8 per cent increments over checks GFS 5 and CSV 21 F, respectively (Table 2). Similarly, in the case of dry fodder yield, the variety GFS 8 (Banas chari) exhibited significantly high dry fodder yield (183.3 q/ha) with an increment of 17.8 per cent over check GFS 5 (Table 3). Further, it was tested under a total of 31 state trials against various check varieties viz., GFS 5, GAFS 12, CSV 21 F, GFS 6 and CSV 46 F. The mean performance of GFS 8 (Banas chari) for green fodder yield over 31 locations, including the preliminary trial was 433.6 g/ha. In the case of dry fodder yield, the mean performance over 30 locations, including the preliminary trial was 139.7 q/ha. In Gujarat, based on 31 testing trials GFS 8 (Banas chari) exhibited high green fodder yield (433.6 q/ha) with an increment of 28.1, 24.2, 6.4 and 8.2 per cent, respectively (Table 2) and based on 30 location dry fodder (139.7 q/ha) with an increment of 26.6, 18.0, 6.8 and 1.8 per cent over the years and locations against checks GFS 5, GAFS 12, CSV 21 F and GFS 6 respectively (Table 3). The variety was also tested in AICRP - Sorghum in IVHT-SC trials as a SPV 2879 in kharif 2021 in fourteen locations (Zone I and Zone II) nationwide. The Green fodder yield means the performance of GFS 8 (Banas chari) among fourteen location trials of IVHT-SC showed 9.2 and 3.07 per cent yield advancement against checks CSV 21 F and CSV 44 F, respectively in Zone I and II. Dry fodder yield

TABLE 1
List of primers used in fingerprinting

S. No	Name of primer	Forward Primer	Reverse Primer
SSR1	msbCIR240	GTTCTTGGCCCTACTGAAT	TCACCTGTAACCCTGTCTTC
SSR2	msbCIR276	CCCCAATCTAACTATTTGGT	GAGGCTGAGATGCTCTGT
SSR3	msbCIR283	TCCCTTCTGAGCTTGTAAAT	CAAGTCACTACCAAATGCAC
SSR4	msbCIR300	TTGAGAGCGGCGAGGTAA	AAAAGCCCAAGTCTCAGTGCTA
SSR5	msbCIR329	GCAGAACATCACTCAAAGAA	TACCTAAGGCAGGGATTG
SSR6	Xcup14	TACATCACAGCAGGGACAGG	CTGGAAAGCCGAGCAGTATG
SSR7	Xcup53	GCAGGAGTATAGGCAGAGGC	CGACATGACAAGCTCAAACG
SSR8	Xtxp12	AGATCTGGCGGCAACG	AGTCACCCATCGATCATC
SSR9	Xtxp67	CCTGACGCTCGTGGCTACC	TCCACACAAGATTCAGGCTCC
SSR10	Xtxp265	GTCTACAGGCGTGCAAATAAAA	TTACCATGCTACCCCTAAAAGTGG
SSR11	Xtxp283	CGCCCGAACTCTTCTTAAATCT	ATTATGCCCTAACTGCCTTTGA

TABLE 2

Green forage yield performance of proposed sorghum entry GFS 8 (Banas chari) (DSF 168) in comparison with check varieties in the Gujarat state

Year/ Season	Name of Locati		Green forage Yield (q/ha)						S. Em. +	C. D. @ CV% 5%	
Season	1 Hui		GFS 8 (Banas chari)	(LC)	(LC)	(NC)	(LC)	(NC)		570	
			(Dunus enur)	GFS 5 (a)	GAFS 12 (b)	CSV 21F (c)	GFS 6 (d)	CSV 46F (e)			
Kharif-2017	PET	Deesa % IOC	411.1ª	350.0 17.5		400.0 2.8			19.3	55.2	9.9
Kharif-2018	SSVT	Deesa Mangrol	862.9 ^{ac} 576.8 ^{abc}	715.1 463.4	762.4 437.4	697.9 478.3			40.4 22.1	119.1 65.3	10.0 8.0
		Dhari Mean (4) % IOC	144.7 ^a 480.6	174.9 118.1 367.9 30.6	225.2 133.8 389.7 23.3	222.2 133.9 383.1 25.5			8.5 5.1	25.2 15.0	6.7 6.5
Kharif-2019	LSVT	Deesa SKNagar (PRS) Ladol	677.7 ^{bd} 551.2 ^{bd} 535.9 ^{bcd}	50.0	475.2 461.0 429.5	641.8 526.4 449.2	530.3 482.7 441.3		25.6 19.5 23.9	75.0 57.2 70.0	7.7 7.4 8.7
		Surat Dhari Kothara	389.0 ^{bc} 212.2 ^b 288.3		278.3 165.3 224.6	328.1 184.2 331.4	397.2 177.0 271.3		10.5 13.8 13.7 24.6	40.4 40.3 72.2	6.2 13.4 15.8
		Viramgam Anand Achhaliya Mean (10)	250.0 385.3 423.9		420.7 229.7 390.9 335.7	574.7 259.3 362.5 396.9	472.0 248.3 407.0 377.5		45.6 20.9 24.5	61.3 71.8	14.6 14.3 10.4
Kharif-2020	LSVT	% IOC Deesa Mangrol Dhari	388.7 ^ь 207.3 322.7		26.3 284.8 197.5 304.6	6.8 357.5 221.9 406.7	12.3 352.5 219.4 339.3		20.6 16.5 31.8	59.9 48.0 92.4	10.5 13.0 15.6
		Kothara Viramgam Anand Ladol	361.3 620.3 490.9 450.3 ^{bcd}		321.3 541.0 521.6 354.6	319.3 574.7 566.9 386.5	337.2 628.0 624.2 372.3		20.7 37.3 27.4 21.1	60.3 108.4 79.6 61.4	11.2 12.3 9.5 9.5
Kharif 2021	I SVT	Achhaliya Mean (8) % IOC Deesa	328.7 ^b 396.3		220.6 343.3 15.4 442.2	312.3 393.2 0.8 500.0	308.2 397.6 - 526.7	533.3	20.9	60.7 97.0	12.0
Kildin-2021		Surat Dhari Kothara Viramgam	440.4 ^b 365.2 169.0 ^{bd} 272.2		326.2 333.3 109.3 255.6	561.0 319.1 157.8 258.3	482.6 372.3 127.7 269.4	635.8 425.5 160.6 258.3	19.7 25.8 11.5 13.2	58.4 76.7 34.1 39.1	7.0 12.7 15.3 8.8
		Anand Ladol Achhaliya Mean (8)	659.0 ^b 599.9 ^{bcd} 618.8 ^{bd} 462.2		455.3 440.3 468.1 353.8	688.2 502.4 597.9 448.1	590.1 508.3 430.5 413.5	838.6 591.0 623.4 508.3	24.1 28.5 38.8	71.5 84.6 115.5	7.0 10.1 11.9
Overall Mea	n Overall I Overall I	% IOC Mean (5) Mean (30)	433.6 466.7 434.3	- 364.3	30.7 - 349.7	-	-	-			
	Overall Overall Overall]	Mean (31) Mean (26) Mean (8)	433.6 427.2 462.2		<i>.</i> .	407.5	394.7	508.3			
Overall % in Frequency o	crease over f top non-s	the checks significant groups	28.1 9/31	- 24.2	6.4 1/30	8.2 4/31	- 1/26	3/8			

ABLE	3
------	---

Year/ Name of Locations Dry forage Yield (q/ha) S. Em. C. D. @ CV% Season Trial 5% \pm GFS 8 (LC)(LC)(NC) (LC)(NC) (Banas chari) GAFS 12 CSV 21F GFS 5 GFS 6 CSV 46F (d) (a) (b) (c) (e) Kharif-2017 PET 155.6 188.9 12.6 36.2 14.3 Deesa 183.3 % IOC 17.8 Kharif-2018 SSVT 313.2^{ac} 40.0 10.0 Deesa 271.9 283.7 256.3 13.6 Mangrol 183.8^b 165.5 159.6 168.3 23.7 8.0 8.3 Surat 182.0abc 86.9 118.2 113.3 6.2 18.4 9.5 Dhari 57.9ª 47.2 53.5 54.3 2.3 6.6 7.2 184.2 142.9 148.1 Mean (4) 153.8 24.4 % IOC 28.9 19.8 Kharif-2019 LSVT 214.7^{bd} 199.8 175.3 11.6 34.0 11.1 Deesa 153.7 SKNagar 168.2^b 148.5 166.3 155.6 6.4 18.9 7.9 213.6^{bcd} Ladol 162.7 164.3 165.1 9.0 26.5 8.8 101.7 Mangrol 96.7 78.4 112.8 10.9 319 18.7 83.9^{bc} 71.3 62.7 87.5 Surat 4.1 12.1 8.4 Dhari 73.2 75.5 82.6 79.8 9.8 28.8 21.8 74.2 56.7 83.5 68.7 18.7 Kothara 6.4 15.9 186.3^{bcd} Viramgam 147.7 149.3 134.3 12.4 36.5 12.5 59.9 63.1 67.9 57.9 17.7 Anand 6.0 16.6 Achhaliya 59.9 176.2 147.8 158.8 15.7 45.9 17.3 Mean (10) 123.1 113.4 122.6 119.6 % IOC 0.4 2.9 86 Kharif-2020 LSVT Deesa 135.9^b 105.9 116.6 120.9 10.2 29.8 16.4 Mangrol 64.9 62.9 73.0 83.3 7.0 20.5 15.6 214.2 148.9 204.3 2294 27.9 81.2 25.2 Dhari Kothara 111.7° 95.9 90.2 85.2 5.5 16.1 10.9 198.7^{bc} 101.3 154.0 184.3 15.1 44.0 14.9 Viramgam Anand 104.3 114.4 131.8 176.0 8.4 24.4 12.1 Ladol 172.3° 157.8 140.8 9.1 26.4 156.0 10.4Achhaliva 74.2 58.5 84.1 80.0 6.5 18.9 13.4 Mean (8) 134.5 105.7 124.3 139.4 % IOC 27.3 8.2 Kharif-2021 LSVT 199.3^b 158.2 182.4 13.5 40.1 14.2 Deesa 171.1 174.4 170.6^b Surat 111.7 213.5 164.2 199.6 7.2 21.4 7.8 Dhari 148.9 191.5 163.1 198.6 283.7 20.8 61.7 18.2 46.7^b Kothara 38.2 57.3 45.5 47.6 2.7 8.1 11.1 Viramgam 76.7 614 61.9 80.6 60.8 8.0 23.6 199 Anand 130.7^b 106.5 150.3 120.6 208.6 6.3 18.6 8.2 Ladol 154.9° 139.2 119.4 128.5 152.8 9.1 27.0 11.8 175.1^{bcd} Achhaliya 113.6 114.6 118.7 143.2 15.4 45.6 18.8 137.9 129.9 Mean (8) 115.0 131.4 158.8 % IOC 19.8 4.9 6.1 Overall Mean 139.7 Overall Mean (5) 184.0 145.4 Overall Mean (29) 138.2 117.2 130.7 Overall Mean (30) 139.1 Overall Mean (25) 131.1 128.8 Overall Mean (08) 137.9 158.8 Overall % increase over the checks 26.6 18.0 6.8 1.8 3/30 1/253/7 Frequency of top non-significant groups 6/30

T. Dry fodder yield performance of proposed sorghum entry GFS 8 (Banas chari) (DSF 168) in comparison with check varieties in the Gujarat state

a, b, c, d and e = Significantly superior than GFS 5, GAFS12, CSV 21F, GFS 6 and CSV 46F, respectively.

Note: The trial of Surat during Kharif 2020 and Mangrol during Kharif 2021 were vitiated due to heavy rainfall.

Year/Season	Zone	Locations	Green fo	S. Em.	C. D. @	CV%		
			SPV 2879 (DSF 168)	CSV 21F (a)	CSV 44F (b)		570	
Kharif-2021	Zone-I	Deesa	9.09	8.26	7.44	0.97	1.95	15.6
		Hissar	5.39	5.54	7.13	0.97	1.95	18.8
		Jhansi	0.58	0.82	0.83	0.16	0.33	22.3
		Ludhiana	6.13	6.89	6.69	0.35	0.71	6.3
		Pantnagar	7.49ª	5.63	7.63	0.71	1.44	12.7
		Surat	5.78	6.61	5.47	0.51	1.03	10.4
		Udaipur	14.31	12.59	13.01	1.33	2.68	12.2
		Mean	7.0	6.6	6.9			
		% inc. over the checks		5.2	1.2			
Kharif-2021	Zone II	Akola	4.12	2.94	5.95	0.77	1.56	15.3
		Chamrajnagar	7.64ª	6.36	6.91	0.53	1.07	9.8
		Coimbatore	5.72	5.47	5.20	0.85	1.71	17.2
		Parbhani	3.35	3.83	3.25	0.59	1.19	22.2
		Rahuri	3.63	3.36	3.77	0.71	1.44	22.5
		Solapur	6.03	4.76	4.40	0.40	0.82	8.9
		Urlikanchan	7.75	6.62	6.74	1.00	2.03	18.4
		Mean	5.46	4.76	5.17			
		% inc. over the checks		14.7	5.6			
Overall Mean			6.22	5.69	6.03			
Overall % increa	ise over the che	ecks		9.20	3.07			
Year/Season	Zone	Locations	Dry Foc	Dry Fodder Yield (q/ha/day)			C. D. @	CV%
			SPV 2879 (DSF 168)	CSV 21F (a)	CSV 44F (b)		570	
Kharif-2021	Zone-I	Deesa	2 96 ^b	2 48	2 09	0.24	0.49	15 73
Kilulii 2021	Zone i	Hissar	1.20	1.26	1.63	0.21	0.12	18.27
		Ihansi	0.20	0.29	0.29	0.06	0.12	23.39
		Ludhiana	1.16	1 38	1 31	0.13	0.12	11.85
		Pantnagar	1.10°	1.26	1 73	0.17	0.35	13.62
		Surat	1.16	2.12	1.17	0.24	0.48	19.24
		Udaipur	4.36	4.28	4.75	0.51	1.03	15.29
		Mean	1.82	1.87	1.85			
		% inc. over the checks		-	-			
Kharif-2021	Zone II	Akola	1.88	1.36	3.32	0.57	1.15	21.27
		Chamrainagar	2.28ª	1.91	2.07	0.15	0.31	9.53
		Coimbatore	1.84	1.79	1.66	0.26	0.53	16.39
		Parbhani	2.14	2.09	1.94	0.42	0.86	27.46
		Rahuri	0.75	0.80	0.81	0.21	0.43	29.41
		Solapur	1.69	1.49	1.24	0.13	0.26	10.16
		Urlikanchan	1.60	1.48	1.63	0.21	0.43	17.32
		Mean	1.74	1.56	1.81			
		% inc. over the checks		11.5	-			
Overall Mean			1.78	1.71	1.83			
Overall % increa	ise over the che	ecks		39	-			

 TABLE 4

 Yield performance (q/ha/day) of proposed sorghum entry GFS 8 (Banas Chari) (DSF 168) in the Initial Varietal Hybrid Trial (IVHT) in the Kharif 2021 at different Zones of India

Where; a and b = Significantly superior than CSV 21F and CSV 44F, respectively.

showed 3.9 percent yield advancement against checks CSV 21 F in Zones I and II, respectively (Table 4). The dairy industry is developing very fast, and hence the demand for forage is increasing day by day. Forage Yield with quality is also of prime importance as sorghum is being used as fodder purpose. The GFS 8 (*Banas chari*) has a 6.10 percent crude protein, which is comparable to that of check cultivars. It has high TSS (% Brix content) 11.1% against check cultivars *viz.*, GAFS 12 (9.2%), GFS 6 (10.2%) and CSV 21 F (8.7 %). On the other hand, the released cultivar GFS 8 has a low HCN content (48.1 ppm) compared to check varieties *viz.*, GAFS 12 (48.8 ppm) and GFS 6 (57.3 ppm) (Table 5).

The released cultivar GFS 8 (*Banas chari*) has medium in flowering, tall plant height, yellow coloration of flag leaf midrib, broad leaf and greyed orange glume colour. It has semi loose panicle with absent of lemma arista formation and yellow orange colour caryopsis after threshing with absent of lemma arista formation (Table 6).

During sorghum cultivation crop infested by many insects and diseases. In case of diseases anthracnose and leaf blight is considered as devasting disease of forage sorghum (Gami et al., 2021). Sorghum shoot fly is considered as one of the most important and causes more damage in early seedling stage. While stem borer also negative impact on sorghum production. The released cultivar tested in various locations in AICRP trials as well as an in-state trial for evaluating reaction toward major diseases and pests. Under field condition, the cultivar GFS 8 (Banas chari) moderately resisted anthracnose and leaf blight diseases in state trial. While in AICRP trial it gives resistant and moderately resistant reaction against anthracnose and leaf blight diseases, respectively (Table 7 & 8). It exhibited lesser infestation of shoot fly (25.90%) and stem borer dead heart (30.80%) in state trials (Table 9). While in the case of AICRP trial Stem borer dead heart % (17.9 %) was observed (Table 9).

The DNA fingerprinting of GFS 8 (*Banas chari*) along with four check varieties GAFS 12, GFS 6, CSV 21F and CSV 46F was performed using 11 SSR Markers. All the markers amplified properly across the genotypes except one (SSR11). All amplified primers were found polymorphic and produced 2 to 3 alleles. Alleles were demonstrated using arrow symbol in Fig. 1.

TABLE 5

Biochemical parameters of proposed entry GFS 8 (Banas chari) (DSF 168) along with checks in fodder (State trial)

Quality parameters	GFS 8 (DSF 168)	GAFS 12 (LC)	GFS 6 (LC)	CSV 21 F (NC)
Crude protein (%)	6.1	5.7	6.7	6.9
TSS (% Brix content)	11.1	9.2	10.2	8.7
NDFD % (Neutral Detergent fibre digestibility)	67.3	72.3	71.0	68.2
HCN content (ppm)	48.1	48.8	57.3	40.0

TABLE 6

Distinguished Morphological characters of proposed entry GFS 8 (Banas chari) (DSF 168) along with checks as per DUS guidelines

S. No.	Characters	GFS 8 (DSF 168)	GFS 6 (LC)	CSV 21F (NC)
		Mali	M. P	T. A.
1.	Plant : Time of panicle emergence (50% of plant with 50% of anthesis)	Medium	Medium to late	Late
2.	Plant : Natural height of plant up to base of flag leaf	Tall	Tall	Tall
3.	Flag leaf : Yellow colouration of midrib	Present	Absent	Present
4.	Leaf : Width of blade (cm)	Broad	Broad	Medium
5.	Lemma : Arista formation	Absent	Absent	Present
6.	Glum colour	Greyed-orange	Grayed Yellow	Greyed-orange
7.	Panicle : density	Semi-Loose	Loose	Loose
8.	Neck of panicle : Visible length above sheath	Short	Medium	Medium
9.	Grain shape Dorsal view	Circular	Circular	Circular
	Profile view	Elliptic	Elliptic	Elliptic
10.	Caryopsis color after threshing	Yellow orange	Yellow white	Yellow orange

Variety	Year	Anthracnose disease Grade (1-9)			Leaf blight disease Grade (1-9)			
		Surat	Deesa	Range	Surat	Deesa	Range	
DSF 168	Kharif-2019	4.7	-	4.7	5.0	-	5.0	
	Kharif-2020	4.9	4.0	4.0-4.9	4.8	4.1	4.1-4.8	
	Kharif-2021	5.1	4.4	4.0-4.9	4.7	4.0	4.0-4.7	
				4.0-5.1 [MR]			4.0-5.0 [MR]	
Bulky Y (SC)	Kharif-2019	6.3	-	6.3	6.7	-	6.7	
,	Kharif-2020	6.0	5.0	5.0-6.0	6.3	4.7	4.7-6.3	
	Kharif-2021	6.1	6.1	6.1	6.1	6.6	6.1-6.6	
				5.0-6.3 [S]			4.7-6.6 [S]	
B-58586 (RC)	Kharif-2019	4.7	-	4.7	4.7	-	4.7	
	Kharif-2020	3.0	4.0	3.0-4.0	4.1	4.0	4.0-4.1	
	Kharif-2021	4.1	3.8	4.0	4.2	3.1	3.1-4.2	
				3.0-4.0 [MR]			4.0-4.7 [MR]	
GFS 6	Kharif-2019	4.3	-	4.3	5.0	-	5.0	
	Kharif-2020	4.4	4.1	4.1-4.4	4.7	4.2	4.2-4.7	
	Kharif-2021	4.9	6.1	4.9-6.1	4.6	4.0	4.0-4.6	
		4.5	5.1	4.1- 6.1[MR]	4.8	4.1	4.0 - 5.0[MR]	
GAFS 12	Kharif-2019	6.3	-	6.3	6.0	-	6.0	
	Kharif-2020	5.5	4.3	4.3-5.5	5.1	4.1	4.1-5.1	
	Kharif-2021	5.7	6.1	5.7-6.1	5.2	6.4	5.2-6.4	
		5.8	5.2	4.3-6.3 [S]	5.4	5.3	4.1-6.4 [S]	
CSV 21F	Kharif-2019	4.7	-	4.7	5.0	-	5.0	
	Kharif-2020	4.4	4.1	4.1-4.4	4.6	4.4	4.4-4.6	
	Kharif-2021	4.7	3.8	3.8-4.7	4.6	3.8	3.8-4.6	
		4.4-4.7	3.8-4.1	3.8-4.7 [MR]	4.7	4.1	3.8-5.0[MR]	

 TABLE 7

 Reaction to major disease at Surat and Deesa centre in LSVT trial

Grade classification :

0.0 - 1.0 = Highly Resistant (HR); 1.1 - 3.0 = Reistant (R); 3.1 - 5.0 = Moderately Resistant (MR); 5.1 - 7.0 = Suceptible (S); 7.1 - 9.0 = Highly Suceptible (HS).

TABLE 8 FS 8 (Banas chari

Disease reaction and Pest incidence of proposed entry GFS 8 (Banas chari) [SPV 2879 (DSF 168)] along with checks in (AICRP TRIALS) All India Mean

S. No.	Particulars	SPV 2879 (DSF 168)	CSV 21F	CSV44F	Susceptible check (SC)	Resistant check (RC)
1.	Anthracnose disease Grade (1-9)	2.9	3.1	3.1	4.3	2.8
2.	Leaf blight disease Grade (1-9)	4.2	4.8	4.7	4.5	3.5
3.	SFDH % (28 DAE)	41.1	35.8	30.0	58.0	21.3
4.	SBDH % (45 DAE)	17.9	16.4	15.0	21.7	12.5

Grade classification: 0.0 - 1.0 = Highly Resistant (HR); 1.1 - 3.0 = Resistant (R); 3.1 - 5.0 = Moderately Resistant (MR); 5.1 - 7.0 = susceptible (S); 7.1 - 9.0 = Highly susceptible (HS).

SFDH = Shoot fly dead heart and SBDH = Stem borer dead heart.

CONCLUSION

The variety GFS 8 (*Banas chari*) was found superior for green fodder yield against checks GFS 5, GAFS 12, CSV 21 F, GFS 6 with an average increment of 28.1, 24.2, 6.4, and 8.2 per cent, respectively, over the years and location. It was also found superior for dry fodder yield against respective checks with an average increment of 26.6, 18.0, 6.8, and 1.8 per cent, respectively, over the years and location. The genotypes have desirable forage traits like tall plant height and broad leaf. It has semi-loose panicle, yelloworange caryopsis after threshing with the absence of lemma arista formation. It was moderately resistant

Variety	Year	SF	TDH % (28 D.	AE)	SBDH % (45 DAE)			
		Surat	Deesa	Average	Surat	Deesa	Average	
DSF 168	Kharif-2019	33.1	-	33.1	41.9	-	41.9	
	Kharif-2020	34.0	12.1	23.1	39.1	13.4	26.3	
	Kharif-2021	34.4	23.7	29.1	39.9	29.2	34.5	
	Year Average	33.8	17.9	25.9	40.3	21.3	30.8	
Sawarna (SC)	Kharif-2019	60.7	-	60.7	72.2		72.2	
	Kharif-2020	63.8	27.1	45.4	66.3	34.2	50.2	
	Kharif-2021	51.5	40.0	45.7	54.0	43.3	48.7	
	Average	58.7	33.5	46.1	64.2	38.7	51.4	
IS-2205/18551 (RC)	Kharif-2019	18.9	-	18.9	17.7	-	17.7	
	Kharif-2020	20.5	7.4	13.9	23.1	8.5	15.8	
	Kharif-2021	21.9	6.4	14.1	23.7	8.1	15.9	
	Average	20.4	6.9	13.6	21.5	8.3	14.9	
GFS 6	Kharif-2019	21.4	-	21.4	22.8	-	22.8	
	Kharif-2020	24.7	19.4	22.1	27.9	17.3	22.6	
	Kharif-2021	27.2	13.8	20.5	29.1	13.5	21.3	
	Average	24.4	16.6	20.5	26.6	15.4	21.0	
GAFS 12	Kharif-2019	33.9	-	33.9	40.1	-	40.1	
	Kharif-2020	35.6	20.8	28.2	43.6	21.1	32.4	
	Kharif-2021	37.7	26.9	32.3	44.5	33.6	39.0	
	Average	35.7	23.9	29.8	42.7	27.4	35.0	
CSV 21F	Kharif-2019	33 3	-	$\frac{1}{33}$	38.6		38.6	
	Kharif-2020	33.6	17.0	25.3	37.7	22.1	29.9	
	Kharif-2021	32.2	16.6	24.4	37.1	19.8	28.5	
	Average	33.0	16.8	24.9	37.8	21.0	29.4	

TABLE 9Reaction to major pest at Surat and Deesa centre in LSVT trial

Where: SFDH = Shoot fly dead heart and SBDH = Stem borer dead heart.

Where: L: Ladder; a: GFS 8 (DSF-168), b: GAFS 12, c: GFS 6, d: CSV 21F, e: CSV 46 SSR number representing to serial number of markers. Fig. 1. DNA profiling of Sorghum genotypes.

to diseases like anthracnose and leaf blight. It has high TSS (% Brix content) and low HCN content as compared to checks.

REFERENCES

- Anonymous, 2021-22: AICRP sorghum progress report; *Kharif* sorghum 2021.
- Gami, R. A., R. N. Patel, P. R. Patel and S. K. Jain, 2021: A novel high-yielding dual-purpose sorghum variety GDJ 1 (Banas Surya) for a semi-arid region of Gujarat. *Electronic Journal of Plant Breeding.* 12(1): 109-121.
- Ghosh, P. K., D. R. Palsaniya, and R., Srinivasan, 2016: Forage research in India: Issues and strategies. *Agricultural Research Journal*, 53(1):1-12.

- Kumari, P., S. K. Pahuja, D. S. Phogat, Satpal, N. Kharor, B. L. Sharma and M. Kumar, 2023: CSV 53F – a new single-cut forage sorghum variety for India. *Forage Res.*, 48(4): 526-529.
- Satpal, S. Kumar, A. Kumar, B. Gangaiah, K. K. Bhardwaj and Neelam, 2021: Evaluation of energy efficiency and optimum resource management in forage sorghum [Sorghum bicolor (L.) Moench] under semi-arid tropics. Forage Res., 47(3): 308-312.
- Thakur, S. R., S. Devasthali, S. N. Upadhayay and R. S. Marabi, 2019: Field Screening of Sorghum Genotypes for Resistance to Shoot fly, *Atherigona soccata* and Stem borer, *Chilo partellus*. Bulletin of Environment, Pharmacology and Life Sciences Bull. Env. Pharmacol. *Life Sci.*, 8 (5): 62-67.