## **GENETIC DIVERGENCE IN OAT (AVENA SATIVA L.)**

### PARBHAT KUMAR, D. S. PHOGAT AND AXAY BHUKER\*

Forage Section, Department of Genetics & Plant Breeding CCS Haryana Agricultural University, Hisar-125004 (Haryana), India \*(e-mail : bhuker.axay@gmail.com) (Received : 10 August 2016; Accepted : 15 September 2016)

## SUMMARY

Genetic diversity among 50 genotypes was carried out using Mahalanobis D<sup>2</sup> statistics for 16 characters. Based on the D<sup>2</sup> values, all genotypes were grouped into seven clusters depending upon the similarity in the expression of their genetic divergence. Maximum number of genotypes were grouped in cluster VI (12) followed by cluster IV (11), I (9), II (8), III (4) and clusters V and VII had three genotypes each. The highest intra cluster D<sup>2</sup> value was observed for cluster V (5.304) followed by cluster I (5.174), cluster III (5.054), cluster VI (4.771), cluster II (4.470), cluster VII (4.501) and cluster IV (4.104). The average inter cluster distance was found to be highest between cluster V and VII (8.558), cluster III and V (7.165), cluster III and VI (5.919) whereas the lower inter-cluster distance was observed between clusters II and IV (5.075), followed by clusters IV and VI (5.328). Out of 16 characters, contribution of seedling dry weight was maximum (39.76%), followed by seed yield/plant (13.71%), seed vigour index II (10.94%), axis length (8.41%) and germination% (7.43%), whereas the remaining characters like 100-seed weight (4.33%), seed vigour index I (2.78%), seedling length (2.61%), days to maturity (2.37%), days to 50% flowering (2.29%), number of tillers/plant (1.80%), flag leaf length (1.47%), inetrnode length (1.22%), number of spikelets/panicle (0.16%), peduncle length (0.65%) and plant height (0.08%) contributed very little for divergence.

Key words : Genetic divergence, oat, yield traits, genotypes

Oat (Avena sativa L.) a constituent of family Poaceae ranks sixth in the world cereal production. It is cultivated for use as food, feed and fodder. The crop has been adopted well by the farmers because of its multi-cut nature and high yield of nutritious palatable fodder. The loss of genetic diversity has become an important problem both in natural plant populations and in important crop species. This loss led to calls for the genetic conservation of crop germplasm (Frankel and Bennett, 1970). The pre-requisite of any breeding programme is the evaluation of existing genetic stock. The success of a systematic breeding programme depends mainly on judicious selection of promising parents from the gene pool. In order to initiate any effective breeding programme to create more variability for further advancement in seed yield and for effective crossing programme, it is pre-requisite to have a thorough understanding about the mutual relationship among the yield and its component traits. It is also essential to classify the available germplasm into clusters for getting more useful transgressive segregants.

### MATERIALS AND METHODS

The field experiment was conducted on 50 genotypes of oat at Forage Research Area and Seed Science & Technology Laboratory of the Department of Genetics & Plant Breeding, CCS Haryana Agricultural University, Hisar during rabi 2014-15. All the genotypes were grown in randomized block design (RBD) with three replications, each genotype having single row of three metre length with 15 cm plant to plant and 45 cm row to row spacing. All the recommended package of practices were adopted to raise a good crop. The observations were recorded for plant height (cm), flag leaf length (cm), peduncle length (cm), internode length (cm), axis length (cm), number of spikelets/panicle, number of tillers/plant, days to 50 per cent flowering, days to maturity, 100-seed weight (g), germination (%), seedling length (cm), seedling dry weight (g), seed vigour index I, seed vigour index II and seed yield/plant (g). Seed quality parameters viz., standard germination test (%), shoot length (cm), root length (cm), seedling length (cm) and seedling dry weight (g) were estimated as per ISTA (2009), while seed vigour indices were calculated according to the method suggested by Baki and Anderson (1970).

The mean values of these 16 characters were subjected to Mahalanobis (1936) D<sup>2</sup>-statistics to measure genetic divergence and clusters were formed by Tocher's method as suggested by Rao (1952).

## **RESULTS AND DISCUSSION**

The mean sums of squares due to genotypes for all the traits studied were highly significant thereby revealing sufficient amount of genetic variation among the genotypes for all the 16 characters studied.

To quantify genetic divergence between any two genotypes or group of genotypes, Mahalanobis'  $D^2$ statistics (1936) as described by Rao (1952) was used and the genotypes were grouped into different clusters on the basis of Ward's minimum variance method (Fig. 1)

All the 50 oat genotypes were grouped into seven clusters based on the relative magnitude of their  $D^2$  values in such a way that genotypes in each cluster had smaller  $D^2$  value than between the clusters. Table 1 reveals the distribution pattern of genotypes in different clusters. Cluster pattern revealed that clusters VI and IV were the largest ones with 12 and 11 genotypes, respectively, followed by cluster I with nine genotypes, cluster II with eight genotypes, cluster III with four genotypes, and clusters V and VII each with three genotypes.

The intra-and inter-cluster  $D^2$  values among genotypes are given in Table 2. The results showed that inter-cluster distances were more than intra-cluster distances which indicated the presence of narrow genetic variation within a cluster. The highest intra cluster  $D^2$ value was observed for cluster V (5.304) followed by cluster I (5.174), cluster III (5.054), cluster VI (4.771), cluster II (4.470), cluster VII (4.501) and cluster IV (4.104).

When diversity was studied among the clusters based on the inter-cluster  $D^2$  values, it showed a range of 8.558 to 5.328. The average inter-cluster distance was found to be highest between cluster V and VII (8.558), clusters III and V (7.165), clusters V and VI (6.931) whereas the lower inter clusters distance was observed between cluster II and IV (5.075), followed by clusters IV and VI (5.328). The higher inter-cluster distance

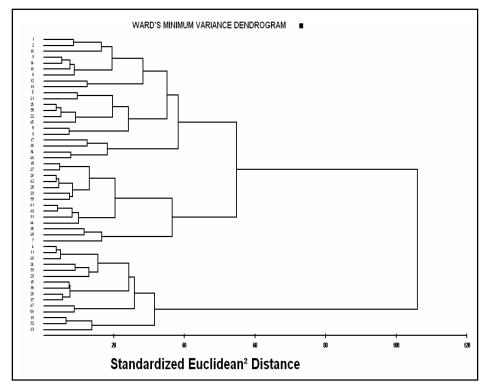



Fig. 1. Clustering by Ward's minimum variance method.

## KUMAR, PHOGAT AND BHUKER

| Cluster | No. of genotypes | Name of genotypes                                  |  |  |  |
|---------|------------------|----------------------------------------------------|--|--|--|
| 9       |                  | HFO-24, HFO-28, HFO-298,, HFO-30, HFO-243,         |  |  |  |
|         |                  | HFO-118, HFO-79, HFO-221 and HFO-222               |  |  |  |
| II      | 8                | HFO-75, HFO-446, HFO-455, HFO-851, HFO-447,        |  |  |  |
|         |                  | JHO 2000-4, HFO-87 and HFO-112                     |  |  |  |
| III     | 4                | HFO-302, HFO-698, HFO-833, Dunav                   |  |  |  |
| IV 11   |                  | HFO-314, HFO-613, HFO-439, HJ-8, HFO-687, HFO-452, |  |  |  |
|         |                  | OS-377, HFO-114, JHO-822, HFO-709 and NDO-I        |  |  |  |
| V       | 3                | HFO-834, Kent, HFO-82                              |  |  |  |
| VI 12   |                  | HFO-52, HFO-192, RO-19, HFO-453, HFO-784,          |  |  |  |
|         |                  | HFO-688, HFO-244, HFO-842, HFO-467, HFO-843,       |  |  |  |
|         |                  | Kalojan and JHO 2006-2                             |  |  |  |
| VII     | 3                | HFO-413, HFO-715 and SKO-90                        |  |  |  |

TABLE 1Clustering of fifty genotypes of oat on the basis of  $D^2$  statistics

| TABLE 2                                                                                            |
|----------------------------------------------------------------------------------------------------|
| Average intra (diagonal) and inter (above diagonal) cluster $D^2$ values in fifty genotypes of oat |

| Cluster | Ι     | II    | III   | IV    | V     | VI    | VII   |
|---------|-------|-------|-------|-------|-------|-------|-------|
| I       | 5.174 | 5.478 | 5.846 | 5.481 | 6.453 | 6.106 | 6.879 |
| II      |       | 4.470 | 5.883 | 5.075 | 6.075 | 5.514 | 6.579 |
| III     |       |       | 5.054 | 5.515 | 7.165 | 5.919 | 6.448 |
| IV      |       |       |       | 4.104 | 5.703 | 5.328 | 6.589 |
| V       |       |       |       |       | 5.304 | 6.931 | 8.558 |
| VI      |       |       |       |       |       | 4.771 | 5.508 |
| VII     |       |       |       |       |       |       | 4.501 |

indicated the presence of more diversity among the genotypes included in these clusters.

Out of 16 characters, contribution of seedling dry weight was maximum (39.76%) for divergence, followed by seed yield/plant (13.71%), seed vigour index II (10.94%), axis length (8.41%) and germination% (7.43%), whereas the remaining characters like 100-seed weight (4.33%), seed vigour index I (2.78%), seedling length (2.61%), days to maturity (2.37%), days to 50% flowering (2.29%), number of tillers/plant (1.80%), flag leaf length (1.47%), internode length (1.22%), peduncle length (0.65%), number of spikelets/panicle (0.16%) and plant height (0.08%) contributed very little for divergence (Table 3). Similar results were reported by Achleitner *et al.* (2008), Ahmed *et al.* (2011) and Krishna *et al.* (2014) in oat.

The cluster means for seed yield /plant and its component characters are presented in Table 4. The data revealed considerable differences among all the clusters for most of the characters studied. It was evident that plant height was lowest in cluster IV (111.624 cm) and the highest in cluster III (125.408 cm). Cluster V recorded the highest flag leaf length (25.667 cm), while cluster II recorded the lowest (20.542 cm). Peduncle length was recorded minimum for cluster III (29.008 cm) and maximum for cluster V (37.200 cm). Cluster V revealed the highest mean value, for internode length (13.444), whereas cluster VII had the lowest mean value (11.178). For axis length, cluster V (33.700) had the highest mean value while cluster VII had the lowest mean value (23.922). Cluster III showed the maximum mean value (54.283) for number of spikelets/panicle and cluster VII showed the lowest mean value (47.822). For number of tillers/plant, the highest mean value was possessed by cluster III (12.600) and the lowest value was possessed by cluster VII (9.289). Days to 50 per cent flowering was the highest in cluster VII (86.44) and the lowest in cluster IV (82.303). Cluster VII recorded the highest mean value of days to maturity (114.667) and the lowest in cluster IV (107.212). 100-seed weight was recorded maximum for cluster V (3.327) and the minimum for cluster I (2.237).

Cluster I revealed the highest mean value for germination% (84.407), whereas cluster VII had the

# DIVERGENCE IN OAT

| S. No. | Source                   | Times ranked 1 <sup>st</sup> | Contribution towards<br>divergence (%) |  |  |
|--------|--------------------------|------------------------------|----------------------------------------|--|--|
| 1.     | Plant height (cm)        | 1                            | 0.08                                   |  |  |
| 2.     | Flag leaf length (cm)    | 18                           | 1.47                                   |  |  |
| 3.     | Peduncle length (cm)     | 8                            | 0.65                                   |  |  |
| 4.     | Internode length (cm)    | 15                           | 1.22                                   |  |  |
| 5.     | Axis length (cm)         | 103                          | 8.41                                   |  |  |
| 6.     | No. of spikelets/panicle | 2                            | 0.16                                   |  |  |
| 7.     | No. of tillers/plant     | 22                           | 1.80                                   |  |  |
| 8.     | Days to 50% flowering    | 28                           | 2.29                                   |  |  |
| 9.     | Days to maturity         | 29                           | 2.37                                   |  |  |
| 10.    | 100-Seed weight (g)      | 53                           | 4.33                                   |  |  |
| 11.    | Germination (%)          | 91                           | 7.43                                   |  |  |
| 12.    | Seedling length (cm)     | 32                           | 2.61                                   |  |  |
| 13.    | Seedling dry weight (g)  | 487                          | 39.76                                  |  |  |
| 14.    | Seed vigour index I      | 34                           | 2.78                                   |  |  |
| 15.    | Seed vigour index II     | 134                          | 10.94                                  |  |  |
| 16.    | Seed yield/plant (g)     | 168                          | 13.71                                  |  |  |

 TABLE 3

 Contribution of different characters towards divergence

| TABLE 4                                                 |
|---------------------------------------------------------|
| Cluster mean for sixteen characters in 50 oat genotypes |

| Characters | Plant<br>height<br>(cm) | Flag<br>leaf<br>length<br>(cm) | Peduncle<br>length<br>(cm) | Internode<br>length<br>(cm) | Axis<br>length<br>(cm) | No. of<br>spikelets/<br>panicle | No. of<br>of tillers/<br>plant | Days to<br>50%<br>flowering | Days to<br>maturity | 100-Seed<br>weight<br>(g) |
|------------|-------------------------|--------------------------------|----------------------------|-----------------------------|------------------------|---------------------------------|--------------------------------|-----------------------------|---------------------|---------------------------|
| I.         | 120.496                 | 25.126                         | 31.100                     | 12.207                      | 31.256                 | 49.044                          | 11.126                         | 84.593                      | 111.556             | 2.237                     |
| II.        | 115.750                 | 20.542                         | 32.246                     | 13.004                      | 30.512                 | 49.746                          | 10.675                         | 85.708                      | 110.000             | 2.574                     |
| III.       | 125.408                 | 22.458                         | 29.008                     | 11.667                      | 25.017                 | 54.283                          | 12.600                         | 84.417                      | 108.333             | 2.258                     |
| IV.        | 111.624                 | 22.576                         | 33.870                     | 13.158                      | 27.715                 | 51.688                          | 10.333                         | 82.303                      | 107.212             | 2.419                     |
| V.         | 118.222                 | 25.667                         | 37.200                     | 13.444                      | 33.700                 | 53.844                          | 11.667                         | 83.333                      | 110.444             | 3.327                     |
| VI.        | 112.767                 | 23.653                         | 33.061                     | 12.236                      | 28.683                 | 48.769                          | 10.646                         | 84.194                      | 108.556             | 2.268                     |
| VII.       | 111.956                 | 22.578                         | 29.444                     | 11.178                      | 23.922                 | 47.822                          | 9.289                          | 86.444                      | 114.667             | 2.286                     |
| GM         | 115.674                 | 23.144                         | 32.463                     | 12.520                      | 28.948                 | 10.804                          | 10.804                         | 84.193                      | 104.493             | 2.409                     |
|            |                         |                                |                            |                             |                        |                                 |                                |                             |                     | contd.                    |

Table 4 contd.

| Characters | Germination<br>(%) | Seedling<br>length                                                 | Seedling dry<br>weight                                                                                                                                                                                                | Seed vigour<br>index I                                                                                                                                                                                                                                                                                                  | Seed vigour<br>index II                                                                                                                                                                                                                                                                                                                                                                                                                        | Seed yield/<br>plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|--------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                    |                                                                    |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                | (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | 84.407             | 37.785                                                             | 0.086                                                                                                                                                                                                                 | 3202.666                                                                                                                                                                                                                                                                                                                | 7.247                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | 84.000             | 36.750                                                             | 0.087                                                                                                                                                                                                                 | 2952.863                                                                                                                                                                                                                                                                                                                | 7.649                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | 80.667             | 35.900                                                             | 0.086                                                                                                                                                                                                                 | 3119.617                                                                                                                                                                                                                                                                                                                | 7.023                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | 80.788             | 38.686                                                             | 0.089                                                                                                                                                                                                                 | 3035.542                                                                                                                                                                                                                                                                                                                | 7.069                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | 82.444             | 38.056                                                             | 0.096                                                                                                                                                                                                                 | 3042.289                                                                                                                                                                                                                                                                                                                | 7.143                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | 78.944             | 35.108                                                             | 0.078                                                                                                                                                                                                                 | 2784.661                                                                                                                                                                                                                                                                                                                | 6.767                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | 77.556             | 35.856                                                             | 0.073                                                                                                                                                                                                                 | 2887.689                                                                                                                                                                                                                                                                                                                | 5.820                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | 81.407             | 36.914                                                             | 0.085                                                                                                                                                                                                                 | 2990.444                                                                                                                                                                                                                                                                                                                | 7.047                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |                    | 84.407<br>84.000<br>80.667<br>80.788<br>82.444<br>78.944<br>77.556 | 84.407         37.785           84.000         36.750           80.667         35.900           80.788         38.686           82.444         38.056           78.944         35.108           77.556         35.856 | 84.407         37.785         0.086           84.000         36.750         0.087           80.667         35.900         0.086           80.788         38.686         0.089           82.444         38.056         0.096           78.944         35.108         0.078           77.556         35.856         0.073 | 84.407         37.785         0.086         3202.666           84.000         36.750         0.087         2952.863           80.667         35.900         0.086         3119.617           80.788         38.686         0.089         3035.542           82.444         38.056         0.096         3042.289           78.944         35.108         0.078         2784.661           77.556         35.856         0.073         2887.689 | 84.407         37.785         0.086         3202.666         7.247           84.000         36.750         0.087         2952.863         7.649           80.667         35.900         0.086         3119.617         7.023           80.788         38.686         0.089         3035.542         7.069           82.444         38.056         0.096         3042.289         7.143           78.944         35.108         0.078         2784.661         6.767           77.556         35.856         0.073         2887.689         5.820 |

lowest mean value (77.556). Cluster IV showed the maximum mean value (38.636) for seedling length and cluster VI showed the minimum mean value (35.108). For seedling dry weight, the highest mean value was possessed by cluster V (0.096) and the lowest value was possessed by cluster VII (0.073). Seed vigour index I was the highest in cluster I (3202.666) and the lowest in cluster VI (2784.661). Seed vigour index II was recorded minimum for cluster VII (5.820) and maximum for cluster II (7.649). For seed yield/plant, cluster I (9.416) had the highest mean value, while cluster VII had the lowest mean value (6.759). Similar results were reported by, Achleitner et al. (2008), Ahmed et al. (2011), Bibi et al. (2012), Vaisi et al. (2013), Krishna et al. (2014) and Jaipal and Shekhawat (2016) in oat. They reported diversity among the genotypes measured by inter-cluster distance was adequate for improvement of forage oat by hybridization and selection. Tiller number, number of leaves and flag leaf length were the main traits for selection of high yielding types.

This comparison indicates that clusters I, III and V had better cluster means for most of the characters. Therefore, clusters I, III and V might be considered better for selecting genotypes which may be used as promising parents for hybridization to obtain high heterotic response and thus better segregants for seed yield in forage oat.

#### REFERENCES

Achleitner, A., N. A. Tinker, E. and Zechner, H. Buerstmayr. 2008 : Genetic diversity among oat varieties of worldwide origin and associations of AFLP markers with quantitative traits. *Theor. Appl. Genet.* **117** : 1041-1053.

- Ahmed, S., A. K. Roy, and A. B. Majumdar. 2011 : Genetic diversity and variability analysis in oat (*Avena sativa* L.). Range Mgmt. Agrofores. 32 : 96-99.
- ISTA. 2009 : International rules for seed testing. *Seed Sci. & Technol.*, **27** : 1-334.
- Baki, A. A., and D. J. Anderson. 1970 : Viability and leaching of sugars from germinating barley. *Crop Sci.*, **10** : 31-34.
- Bibi, A., A. N. Shahzad, H. A. Sadaqat, M. H. Tahir, and B. Fatima 2012 : Genetic characterization and inheritance studies of oats (*Avena sativa* L.) for green fodder yield. *Internat. J. Boil. Pharm. Sci.*, 1 : 450-460.
- Frankel, O. H. and E. Bennett. 1970 : *Genetic Resources in Plants-Their Exploration and Conservation*. Blackwell Scientific Publications, Oxford.
- Jaipal and S. S. Shekhawat. 2016 : Genetic variability and divergence studies in oats (*Avena sativa* L.) for green fodder and grain yield. *Forage Res.* **42** : 51-55.
- Krishna, A., S. Ahmed, H. C. Pandey, and V. Kumar, 2014 : Correlation, path and diversity analysis of oat (*Avena* sativa L.) genotypes for grain and fodder yield. J. Plant Sci. Res., 1 : 1-9.
- Mahalanobis, P. C. 1936 : *Proc. of National Academy of Sci., India*, **2** : 49-55.
- Rao, C. R. 1952 : Advanced Statistical Methods in Biometrical Research. John Wiley and Sons, New York. pp. 390.
- Vaisi, H., A. R. Golparvar1, A. Resaie, and S. Bahraminejad. 2013 : Factor analysis of some quantitative attributes in oat (*Avena sativa* L.) genotypes. *Sci. Agric.*, 3 : 62-65.